SER Universal Testing Platform: SER3 Model Line
Redefining The Paradigm in Physical Material Characterization
SER Universal Testing Platform...
The New Paradigm in Extensional Rheology

The SER (Sentmanat Extensional Rheometer) Universal Testing Platform manufactured exclusively by Xpansion Instruments represents the new paradigm in extensional melt rheology and a breakthrough in the field of physical material characterization technology. The unique patented technology (US Pat. No. 6,578,413 & 6,691,569) first developed by Dr. Martin Sentmanat in his pioneering work at The Goodyear Tire & Rubber Company incorporates dual wind-up drums that allow for a truly uniform extensional deformation during material testing. Although first developed for use in characterizing the physical behavior of polymeric materials in uniaxial extension, the SER is not just an extensional rheometer. From extensional melt rheology to solids tensile, tear, fracture, and peel testing, this miniature unit’s unparalleled performance and capabilities can help you cover the broad spectrum of your physical material characterization needs.

Unique Patented Technology

The unique dual windup drum design of the SER allows for a truly uniform and controlled extensional deformation in a fixed plane of testing, which allows for easy strain validation and continuous visual access to the sample during the material deformation process. Because the deformation remains in a fixed plane at all times, other experimental visualization techniques such as flow birefringence and x-ray/neutron beam scattering can be incorporated with the SER regardless of the mode and kinematics of material deformation.

The superposition of the theoretical width evolution (shown as a yellow box) over the actual sample width evolution illustrates the true control of extensional deformation with the SER. The ease of sample deformation visualization and strain validation with the SER is also clearly demonstrated because the extensional deformation remains in a fixed plane.

Deformation Visualization AT ALL TIMES.
The Power of Extensional Rheology

Flows in simple extension are said to be “strong” in the sense that they can generate a much higher degree of molecular orientation and stretching than flows in simple shear. Shown here are relative depictions of a strain deformation of 2 in simple shear and extension for samples of identical initial dimensions. As a consequence, extensional flows are very sensitive to crystallinity and macrostructural effects such as polymer long-chain branching. High-rate, transient extensional flow is also the dominant type of deformation in converging, squeezing, and stretching flows that occur in typical polymer processing operations. Although these types of transient extensional flow measurements have historically been difficult to perform on polymer melts, the revolutionary technology embodied in the SER Universal Testing Platform marks a true breakthrough in the field of polymer melt extensional rheology. Most notably, recent studies with the SER [Rheol Acta (2004) 43: 624–633; Rheol Acta (2005) 44: 1–15] have revealed the important role of high-rate extensional flow behavior in polymer melt processability, fracture, and flow instabilities.

The SER Principle

The ends of a specimen are secured to the surfaces of two windup drums, such that for a constant drum rotation, Ω, a constant Hencky strain rate is achieved. As the specimen is stretched across the drum surfaces, it offers a resistant force, F, on the windup drums that translates into a torque, T, about the primary axis of rotation. Hence, for a given rate of extensional deformation, the measured torque signal is directly related to the extensional viscosity of the specimen being stretched in the isolated ‘stretch zone’ of length L defined by the tangent plane between the drums.

By virtue of its unique design and the fact that the specimen deformation zone remains in a fixed plane regardless of the kinematics of deformation, the SER can be used on rheometers comprised of a separate motor and transducer (CRR) or a single motor/transducer (CSR) module.

The SER Universal Testing Platform ... Unrivaled Performance.
A Multitude of Applications

Extensional Rheology

The miniature SER fixture can be easily attached to the host rotational rheometer system, accommodated within the oven chamber of the host rheometer, and operated with the existing control software of the host rheometer. By controlling the motor rotation and operating temperature of the host rheometer system, the SER can be used to characterize extensional melt flow behavior of a large variety of polymeric materials over a very broad range of rates and temperatures, from low viscosity polymer melts to ultra high viscosity elastomers and compounds.

Differences between linear and branched polymer architectures are clearly evident from the melt tensile stress growth data. Note the broad span of rates and how the low strain portions of the tensile stress growth curves superpose with the linear viscoelastic envelope defined by the plot of 3 times the shear stress growth curves taken from cone & plate measurements.

Even subtle differences in polymer architecture that are often difficult to detect from shear rheology data are clearly evident from extensional data.

Regardless of the host platform being used, the SER provides accurate and consistent results over a very broad range of rates and melt viscosities.

Although historically difficult to perform, the tensile stress relaxation modulus of polymer melts can be easily and directly determined from step extension experiments.

Cessation of extension experiments are useful in determining the strain dependence of relaxation behavior and in studying the onset of elastic melt instabilities.

Peel/Adhesion Testing

The peel separation front is confined to the region between the drums ensuring full visual accessibility during controlled rate and/or force peel testing.

The SER can also be used to measure the adhesive properties of pressure sensitive adhesives, gels, and pastes against a variety of substrates over a very broad range of rates and temperatures. Using this same 180° peel geometry the SER can be used to measure the work of adhesion and the onset of cohesive/adhesive instabilities of polymer melts against various surface energy interfaces.

The peel properties of pressure sensitive adhesives can be characterized as a function of substrate, temperature, and rates unachievable with conventional testing.

The peel properties of polymer melts can be used to fingerprint polymer melt processing behavior and to elucidate the role of adhesive failure in melt processing instabilities.

A Broad Range Multi-Tasking Test Platform.
Miniature Scale Solids Testing

Rheo-Optics
Because the deformation field occurs in a fixed plane with the SER, in-situ rheo-optics and birefringence measurements can be made on materials exhibiting birefringent behavior during the deformation process. Although operation of the SER can be coupled with any number of sophisticated laser, or electromagnetic radiation techniques, a simple white light source, a pair of linear polarizer optical filters, and a camera with video capturing capability is all that is needed in order to characterize the rheo-optical behavior of materials undergoing deformation on the SER. Below is an illustration of the evolution (from left to right) of the rheo-optical behavior of a butyl elastomer relaxing from a uniform uniaxial extension deformation.

Tensile Testing
The SER can also be used to perform tensile testing on elastic solids and semi-solids over a very broad range of true strain rates unachievable with conventional testing methods. The tensile properties of complex polymeric materials may also be characterized over a wide range of temperatures from the solid state to the melt state on miniature samples weighing just a few milligrams.

Tear Testing
Sample tear of the trouser specimen is confined to the region between the drums thereby allowing full visual access to the tear propagation site during controlled rate and/or controlled force tear testing.

Fracture Testing
The fracture behavior of thin gage solid polymers, cured rubber, composites, and metals can be characterized at rates unachievable with conventional testing.

Coming Full Circle in Material Characterization… Bridging the Gap From Molten to Solid State.
SER3 Technology: Raising The Bar On Performance

Building upon the success of the original SER-HV and the SER2 model lines, the new SER3 model line can be accommodated on virtually every commercially available host rotational rheometer system on the market, making it easier than ever to access the universal testing capabilities of SER Technology.

SER3 Model Line:
- SER3-P - for the Anton Paar MCR Line of Rheometers
- SER3-A - for the TA Instruments ARES Line of Rheometers
- SER3-G - for the TA Instruments DHR & AR Rheometer Lines
- SER3-T - for the Thermo Fisher MARS Rheometer Line
- SER3-M - for the Malvern Kinexus Rheometer Line

<table>
<thead>
<tr>
<th>INSTRUMENT PARAMETER</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Operating Torque</td>
<td>2500 g-cm</td>
</tr>
<tr>
<td>Minimum Torque Threshold</td>
<td>< 0.05 g-cm</td>
</tr>
<tr>
<td>Maximum Recommended Hencky Strain Rate</td>
<td>20+ s⁻¹</td>
</tr>
<tr>
<td>Hencky Strain Per Drum Revolution</td>
<td>5</td>
</tr>
<tr>
<td>Maximum Tear/Peel Rate</td>
<td>100+ cm/s</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>0°C to 315°C</td>
</tr>
<tr>
<td>Windup Drum Diameter</td>
<td>1.031 cm (0.406 in)</td>
</tr>
<tr>
<td>Stretch Zone Gage Length</td>
<td>1.272 cm (0.501 in)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE PARAMETER</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Zero-Shear Viscosity</td>
<td>~ 10,000 Pa-s</td>
</tr>
<tr>
<td>Sample Mass Range</td>
<td>5 – 200 mg</td>
</tr>
<tr>
<td>Recommended Sample Width Range</td>
<td>0.1 – 1.27 cm</td>
</tr>
<tr>
<td>Recommended Sample Thickness Range</td>
<td>0.005 – 0.1 cm</td>
</tr>
</tbody>
</table>

The newly redesigned SER3 model line allows for a much lower torque threshold than previous models. Whether you are testing the extensional viscosity of polymer melts at elevated temperatures or the mechanical properties of solid materials at low temperatures, the SER3 can cover an even broader spectrum of physical material behavior than ever before. Unleash the full potential of your host rotational rheometer system with the new SER3 Model Line of SER Universal Testing Platforms that truly redefines the paradigm in physical material characterization technology.

Xpansion Instruments, LLC
1425 Glenoak Dr.
Tallmadge, OH 44278
USA
Tel: (330) 618-0062
Fax: (330) 633-4284
E-mail: sales@xpansioninstruments.com
Web: www.xinst.com

Detachable drum options for the SER3 model line